Math 242 Midterm 1

Name:

\qquad

Please circle your section:

Recitation 1 Thurs 12-12:50 TA - Dan Flores
Recitation 2 Thurs 1:30-2:20 TA - Dan Flores
Recitation 3 Tues 9-9:50 TA - Vince Chung
Recitation 4 Tues 12-12:50 TA - Vince Chung
Recitation 5 Wed 9:30-10:20 TA - Lance Ferrer
Recitation 6 Wed 12:30-1:20 TA - Lance Ferrer
Recitation 7 Fri 10:30-11:20 TA - Ikenna Nometa
Recitation 8 Fri 12:30-1:20 TA - Ikenna Nometa

Question	Points	Score
1	12	
2	8	
3	14	
4	10	
5	16	
6	40	
Total:	100	

Recitation 9 Fri 9:30-10:20 TA - Dan Flores

- You may not use notes or calculators on the test.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work and make clear what your final solution is (e.g. by drawing a box around it).
- The last page is a formula sheet. You are welcome to remove this from the exam.
- Good luck!

1. Given below is the graph of a one-to-one function f whose domain is the interval $[3,9]$.

(a) (4 points) Determine $f^{-1}(0.8)$. [Approximately, if need be.]
(b) (4 points) Which of the following values is closest to $\frac{d f^{-1}}{d x}(0.6)$? (Be aware of the scaling of the axes!)
2. $\frac{d f^{-1}}{d x}(0.6)=-5$
3. $\frac{d f^{-1}}{d x}(0.6)=-1 / 5$
4. $\frac{d f^{-1}}{d x}(0.6)=0$
5. $\frac{d f^{-1}}{d x}(0.6)=1 / 5$
6. $\frac{d f^{-1}}{d x}(0.6)=5$
(c) (4 points) Which of the following intervals most closely resembles the domain of f^{-1} ?
7. $[-0.3,1]$
8. $[1,1.3]$
9. $[3,9]$
10. $(-\infty, \infty)$
11. Find the exact value:
(a) (4 points) $\log _{4} 20-\log _{4} 5$
(b) (4 points) $\cot \left(\sin ^{-1}\left(\frac{1}{2}\right)\right)$
12. Differentiate with respect to x. You do not have to simplify your answers.
(a) (7 points) $y=\sin \left(e^{-2 x}\right)$
(b) (7 points) $y=(\ln (x))^{\ln (x)}$
13. (10 points) The population of an idealized colony of bacteria grows exponentially, so that the population doubles every half-hour. The experiment begins at $6: 00 \mathrm{pm}$. If at $6: 10 \mathrm{pm}$ the population is measured at 20 bacteria, how many will there be at $8: 00 \mathrm{pm}$?
14. Find the following limits. Remember to use proper notation, and to indicate if you are using L'Hospital's Rule.
(a) (8 points) $\lim _{x \rightarrow-\infty} \arctan \left(\frac{1+x}{3-x}\right)$
(b) (8 points) $\lim _{x \rightarrow 0} \frac{\cos (5 x)-1}{x \sin (2 x)}$
15. Evaluate the following integrals
(a) (10 points) $\int x e^{3 x} \mathrm{~d} x$

Page 6
(b) (10 points) $\int \frac{\mathrm{d} x}{x^{2} \sqrt{x^{2}+1}}$

Page 7
(c) (10 points) $\int \cos ^{2}(4 x) \mathrm{d} x$

Page 8
(d) (10 points) $\int_{2}^{3} \frac{\left(\ln \left(x^{2}\right)\right)^{2}}{x} \mathrm{~d} x$

Page 9

Page 10

Formula sheet

- Derivatives of inverse trigonometric functions.

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1}(x) & =\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \cos ^{-1}(x) & =-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \tan ^{-1}(x) & =\frac{1}{1+x^{2}} & \frac{d}{d x} \cot ^{-1}(x) & =-\frac{1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1}(x) & =\frac{1}{x \sqrt{x^{2}-1}} & \frac{d}{d x} \csc ^{-1}(x) & =-\frac{1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

- Trigonometric identities.

$$
\begin{array}{rlrl}
\sin ^{2} x+\cos ^{2} x & =1 & \begin{aligned}
\sin (x+y) & =\sin x \cos y+\cos x \sin y \\
1+\tan ^{2} x & =\sec ^{2} x \\
\cos (x+y) & =\cos x \cos y-\sin x \sin y \\
1+\cot ^{2} x & =\csc ^{2} x
\end{aligned} & \\
\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y} \\
\sin ^{2} x & =\frac{1}{2}(1-\cos (2 x)) & & \\
\cos ^{2} x & =\frac{1}{2}(1+\cos (2 x)) & & \\
\sin x \cos x & =\frac{1}{2} \sin (2 x) & & \\
\sin x \sin y & =\frac{1}{2} \cos (x-y)-\frac{1}{2} \cos (x+y) & & \\
\cos x \cos y & =\frac{1}{2} \cos (x-y)+\frac{1}{2} \cos (x+y) & & \\
\sin x \cos y & =\frac{1}{2} \sin (x-y)+\frac{1}{2} \sin (x+y) & &
\end{array}
$$

- Integrals of trigonometric functions.

$$
\begin{aligned}
& \int \tan x d x=\ln |\sec x|+C \\
& \int \cot x d x=\ln |\sin x|+C \\
& \int \sec x d x=\ln |\sec x+\tan x|+C \\
& \int \csc x d x=-\ln |\csc x+\cot x|+C
\end{aligned}
$$

